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1. In [1]. the equation with retarded argument

dr (t

W =f e 2= 2=9@0 onE (1.1)

has been treated by the perturbation method, in seeking to determine an
asymptotic expansion of the solution z(t, T) in terms of a power series
in small retardation T

2t D =n0+m0+ a0+ .. (1.2)

In the case of equation

dx {1)

it

—=ax(t—1), z()=g{) onE, (1.3)

whose solution may be obtained by a step by step method, the expansion
(1.2) coincides with the expansion of the solutiomn x(t, T) of (1.3) by
Taylor’s formula. In this connection, the question arises as to the
differentiability of the solutions of Equation (1.1) with respect to 7.
In this note the following theorem will be proved:

Theorex. If the function f(t, x(t), z(t — 7)) has continuous partial
derivatives, with respect to all its arguments, up to order N, and the
function @(t) has continuous derivatives with respect to ¢t up to order
N, then, for each fixed t* > 0 and a sufficiently large N, there always
exists a number 7T*(t*, N) = t*/N, such that the function x(t*, T) has N
continuous derivatives with respect to 7 on the interval 0 <t <1

ar (t*, vvov, ..., Nz, 1)/ 0TV
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From this follows the possibility of expanding, for sufficiently small
T, the function x(t, T) using Taylor’s formula

2, =3, 0+, ¢, 0+ Ta" (1 O +...
Proof. Suppose that the initial condition in (1.1) is of the form
z(t)=0@() for —ooLt0 1.4

Equations (1.1) and (1.4) determine the solution z(t, T), as a func-
tion of ¢t and T, on the interval 0 < t T < + ©. Let the variable para-
meter T be 0 <1 < T,. Suppose that the retardation is chosen from the
number interval just mentioned. Substituting x(t, T) in (1.1), we obtain
the identity

di(;;_l’=f(t,z(t, %), Z (¢t —T, 7)) (1.5)

For an arbitrary, sufficiently small, increment AT of T, we obtain
the corresponding identity

‘ﬂ%"ﬁ!} =7, Xt T+ A7), X (t— (T + A7), T+ A7) (1.6)
Let us subtract (1.5) from (1.6), and apply the theorem of the mean
of the differential calculus, to obtain

d(Xd——z) =f(t, 4Y; X-,)_/(t» z, x1)= f(t’ X’ X“) -

4
—f(l) z, X1)+f(tr z, X‘g)—/(t) z, x-g)=
a/ (tv z+ el (X—:t), X:) af (tn z, %, + 02 (X'——x':))
- 5 [ —x) oo X, —z) (1.7)

(00, 6:<<Y1)

Transforming the difference X& - by means of the theorem of the
mean, we obtain

X —z . =z(t—(t+ A7), T+ A)—2(l—1,T) =
=r(@l—(+A), T+ AD)—z(@—T1, T+ At —T, T+ AN)—2(l—7T, 7)==
- d’(‘—T—ZzAf"“‘“A” AT+ z(t—7% T+AT)—2(t—1, T)
(0 <83 <)
while, upon dividing both sides of Equation (1.7) by Ar, the result is

d X—2z2 _ a](t,x+01(X—z), Xr) X~$)
& AT 7z ( At )+
ofityr, 2 40 (X —2)) yx—2 dz (t — T — B3A7, T+ A7)
+ i~ {5=5).- . b oas

In a certain neighborhood of zero: 0 < ¢t << h < 7, the derivatives
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Of(...)/9xz, Of(...)/31, and dx(...)/dt are continuous functions of the
two variables ¢ and 7, jointly. Indeed, if X - x # 0, X, -z # 0, Ar#0,
then the asserted continuity of these derivatives follows from the equa-
tions:

..y T X, X)—f(t,z X)) o () _Thm X)—f(t,z, )

dr A—=z dr. X_ —=,
dr{...)  z{t—T, T4 AT)—z(t—(r-L AT), T4 AT)
dt Av

In these equations, both the numerator and the denominators are con-
tinuous (see tZ}), and the denominator is not equal to zero. Since, as

t - t, At - A7, one has that X — x - 0, X, — %, = 0, and AT ~ 0; then,

in view of the continuity of the derivatives in question with respect to
the totality of the arguments, the ratios in question tend, respectively,
to the limits

Sfit, e (t), x(t — 1)) dft, (), x(t—T) dr{t—1, 1)
dz ’ dz, T dt :

Egyuation (1.8) may be regarded as a linear nonhomogeneous equation
with retardation T and unknown function X — x/AT. Its coefficients, by
what has been demonstrated, are continuous functions of the two variables
t and T jointly (for sufficiently small !AT!). The initial function for
the sought solution, obviously, is ¢(t) ¥ 0 on 50‘ Consequently, applying
to Equation (1.8) the theorem on the continuous dependence of solutions
on the right-hand side {2], we obtain that the solution of Equation (1.8)
also depends continuously on A T, ip particular, the following limit
exists:

o X —=z ozt T ATY—x (¢, T) __8x (L, 1)
lim T = lim F=3
Ai»o At A;»o Ax ot

Thus, for 0 < t <C h there exists a continuous derivative Jx(t, T)/0T,
which satisfies the linear nonhomogeneous equation

dz (t) 3fit, = (D), x{t — B, @ (), Tt —
zdi)z f( x()a:( r)}:(t)+ / a'((}%:c ) St — 1) —
maf(t,x(t‘)a;:‘v(tmr)) dx (t;t, T) (1.9)

As is well known [3], the derivative dx{t)/dt of the solution, general-
1y speaking, is discontinuous at t = 0. Hence z(t) = Ox(t, T)/J7¥, general-
ly speaking, is not defined at the point ¢ = 7. In the coordinate plane
(t, Ty, the equation t = T defines a "line of discontinuity" of the de-
rivative 9x(t, T)/%v. For t > 7 the derivative dx(t — T, T)/dt of the
solution, and together with it also Bx(t, T} /0T, are continuous.
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Equation (1.9) we shall call the equation of variations. The equation
of variations for the second derivative d%z(t, 1)/97% will contain
d¥x(t — 1, T)/dt®, that is, 9%x(t, T)/9r? will, in general, be not de-
fined at the point ¢t = 27. In the coordinate plane (t, T), the equation
t = 21 defines a line of discontinuity of the second derivative of the
solution with respect to 7, that is Bzx(t, T)/Ehz. Analogously, we may
construct the equations of variations for third, ..., and nth derivatives,
and arrive at the conclusion that the lines t = a1 (for n =1, 2, ...)
are lines of discontinuity for the derivatives oPz(t, T)/t™. Let us con-
struct the lines t = a7t (for n = 1, 2, ...) in the t7 plane.

From the figure there follows the asserted conclusion concerning the
differentiability of the solution of Equation (1.1) with respect to T,
for a fixed value of t*.

2. The method of expanding solutions in series of a small retardation
parameter may be employed in calculating periodic solutions of systems
with retardation

‘%@ =7t z(), z(t—7)) 2.1

where x(t) = {xl(t). caes z"(t)} is a vector function, and the function
f has period 2w in t,

Let us suppose that the system (2.1) possesses a unique periodic solu-
tion x(t), with period 2w, for 0 < T < g; which, as is well known, is de-
fined by an initial function which is a periodic extension of x(t) to the
initial set. It is clear [3] that the periodic solution xz(t) will be
infinitely differentiable if the function f{¢t, x(t), x{(t - 1)) is also
infinitely differentiable. Consequently, by the methods of [1] the solu-
tion x(t) may be approximated to any desired degree of accuracy

T = (1) S Tr (1) . ;_T:xn(t}+0(r“+l} O <t <<2m)

where xg(t) is a solution of the system

dxy (1)
@ =/ %), 2 (1) (2.2)
and x (1) (for n =1, 2, ...) is a sclution of the system
B () Tof (20 (D), 20 (1) | OF (2, 2y (1), 7o (8
= [ GB.L‘ o), oa(x‘ 0 )):l z, (1) + . (1) (n=1,2..) (2.3

where fp(t) depends on (), x (1), ..., x,;{t) and is a known function
of time. In the case under consideration Equation (2.2) has & unique
periodic solution with period 2w. Thus (2.3) is a linear nonhomogeneous
system with periodic coefficients of period 2, and with a known periodic
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function fn(:). Let us suppose that the homogeneous system corresponding
to (2.3) possesses only the trivial periodic solution. Then (2.2) and
(2.3) define a unique periodic solution

n
T ) S (8) - = e (1) X
n! A
which approximates the periodic solution i,,zﬁ

z(fa of the system (2.1) up to terms of order
n
T .

By way of an example, consider the equa-
tion
()4 ax () +b{)z(t—1)=F () (a>0) (2.4

where T is a small retardation, and b(t) and f(t) are periodic functions
with period 2w. Let us assume that !b(t)l < a. Then, for the equation

x(t) Lax(t+ bz —1)=0 2.5)

one may construct a functional which satisfies the hypotheses of a
theorem of Krasovskii [5} concerning uniform asymptotic stability. Con-
sequently, there exists a unique periodic solution of Equation (2.5),
namely x(t) = 0. According to [4], Equation (2.4) has a unique periodic
solution x(t), which may be approximated to any desired degree of accu-
racy by means of the method outlined above. Let us remark that, for Equa-
tion (2.4), the results obtained in this way have something in common
with the results of Krasovskii [5].
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