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1. in [I], the equation with retarded argument 

q =f(b, r(t), z(t-z)), x(t)=‘P(t) on 23, (I.11 

has been treated by the perturbation method, in seeking to determine an 
asgmptotic expansion of the solution I( t, T) in terms of a power series 
in small retardation T 

z(t,s)=xo(t)+Tsl(t)+~la(t)+... (1.8 

In the case of equation 

d% it) 
__-L- =ax(t-T), 
r/l 

5 (t) = cp (t) on E@ U-3) 

whose solution nay be obtained by a step by step method, the expansion 

(1.2) coincides with the expansion of the solution n( t. T) of (1.3) by 
Taylor a formla. In this connection, the question arises as to the 
differentiability of the solutions of Equation (1.1) with respect to T. 

In this note the following theorem will be proved: 

Thcoren. If the fuactfon f( t, X( tf, x( t - -0) has continuous partial 

derivatives, with respect to all its arguments, up to order N, and the 
function q(t) has continuous derivatives with respect to t up to order 
N, then, for each fixed t l > 0 and a sufficiently large N, there always 
exists a number -r*(t*, N) = t*/N, such that the function X( t*. T) has N 

continuous derivatives with respect to T on the interval 0 <T < T* 

1430 
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From this follows the possibility of expanding, for sufficiently small 
T, the function X( t, v) using Taylor’ 8 formula 

z (t. z) = z! (t, 0) + rx”, (t, 0) + $zNz (t, 0) + . . . 
d 

Proof. Suppose that the initial condition in (1.1) is of the form 

x(f)=cp(t) for --m<t<O (1.4) 

Equations (1.1) and (1.4) determine the solution X( t, v), as a func- 
tion of t and T, on the interval 0 6 t Q T < + 0). Let the variable para- 
meter T be 0 <r < I~. Suppose that the retardation is chosen from the 
number interval just mentioned. Substituting X( t, T) in (1. l), we obtain 

the identity 

&(t, = f (t, 2 (t, T), 2 (t - T, ?)) 
dt 

(1.5) 

For an arbitrary. sufficiently small, increment A-r of T, we obtain 
the corresponding identity 

dX (‘9 it+ “) = f (t, X (t, r + At), X (t - (z + A@, v + AZ) (1.6) 

Let us subtract (1.5) from (1.6). and apply the theorem of the mean 

of the differential calculus, to obtain 

d(X -x) = f (1, x, x,1 - f (t, 2, 5,) = f (t, x, X,) - 
dt 

- f (t, 2, 1,) + f v> +, X,) - f (6 x* x,1 = 

af (t, x + 01 (X - X), X,) 
zz 

8X 
(X-X) $ 

a/ (b =, X, + @2 (XT -X:)) 

ax, 
(XT - XJ (1 .i) 

(0 < fh, 01 < 1) 

Transforming the difference Xv - xv by means of the theorem of the 
mean, we obtain 

XT-xT=x(t-((t+AT), ?+A?)-x(t--7,T) = 

=z(t-((r+Ar),z+A~)--(t--r,~+Ar)+x(t--,~+A’C)--(t--t,~)= 
= _ dx (1 - z - 03Ar, v + AT) 

dt 
Ar + x (t - I, T + AT) - x (t - I, T) 

(0 < 03 < f) 

while, upon dividing both sides of Equation (1.7) by AT, the result is 

d x-x 
drT?-= 

al (4, =, zz + @a (X, - x,)) x - x 
-l- 

% 
{(_& - &x0--- fy’ r+ Ad 1 (**8) 

In a certain neighborhood of zero: 0 < t < h < T. the derivatives 
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af(. ..>/a~, aft. ..I/&, and dx(...)/dt are continuous 
two variables d and 7, jointly. Indeed, if X - x # 0, 
then the asserted continuity of these derivatives fol 
tions: 

functions of the 

XT - 5 f 0, A-rfc. 
lows from the equa- 

In these equations, both the numerator and the denominators are con- 
tinuous (see 1211, and the denominator is not equal to zero. Since, as 

t -. 7, AT - G, one has that X - x - 0, XT - x1. - 0, and AT - 0; then, 
in view of the continuity of the derivatives in question with respect to 
the totality of the arguments, the ratios in question tend, respectively. 
to the limits 

a# 0. x (ff, r (r - TN a! (4 z (Q. r (t - ?I) dx (t - T, r! ..“.___ _ 
iT?X I 

ax, 
, dt ’ 

Equation (1.8) may be regarded as 3 linear nonhomogeneous equation 
with retardation + and unknown function X - X/AT. Its coefficients. by 
what has been demonstrated, are continuous functions of the two variables 
t and T jointly (for sufficiently small IAT/). The initial function for 
the sought solution, obviously, is cp( t) E 0 on E,. Consequently, applying 
to Equation (1.8) the theorem on the continuous dependence of solutions 
on the right-hand side [21, we obtain that the solution of Equation (1+8) 
also depends continuously on A T; in particular, the following limit 
exists: 

1im s--s - ax (6 -cl 
AT+O Av 

fim 5 (tt f + AT) -X (t, z) 
ACLS-+O AT-- = at 

Thus, for 0 f t < h there exists a continuous derivative 2x( t, T)/&, 
which satisfies the linear nonhomogeneous equation 

aj (t, x (t), x (f - z)) t-h (t - z, Tj 
- ax: ~ -----a (f.9) 

As is well known [S], the derivative dx{ t)/dt of the solution, general- 
ly speaking, is discontinuous at t = 0. Hence L( tf = &( t, T)/&, general- 
ly speaking, is not defined at the point’ t = T. In the coordinate plane 

(t. T), the equation t = T defines a “line of discontinuity” of the de- 
rivative a,( t, t)/dr. For t > T the derivative dr( t - T, -r)/dt of the 
solution, and together with it also &(t, T)/&, are continuous. 
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Equation (1.9) we shall call the equation of variations. The equation 
of variations for the second derivative a2x( t, -O/b2 will contain 
d2z( t - T, -r)/dt’, that is, a2x( t, T)/&~ will, in general, be not de- 
fined at the point t = 2-r. In the coordinate plane ( t, T), the equation 
t = 2-r defines a line of discontinuity of the second derivative of the 
solution with respect to -r, that is a2x( t, -r)/;fs2. Analogously, we may 
construct the equations of variations for third, . . . , and nth derivatives, 
and arrive at the conclusion that the lines t = nT (for n = 1, 2, . . .) 
are lines of discontinuity for the derivatives anx( t, T)/&“. Let us con- 
struct the lines t = nv (for n = 1, 2, . , .) in the tv plane. 

From the figure there follows the asserted conclusion concerning the 
differentiability of the solution of Equation (1.1) with respect to T. 
for a fixed value of t*. 

2. The method of expanding solutions in series of a small retardation 
parameter may be employed in calculating periodic solutions of systems 
with retardation 

@-w = f (t, r(t). z (t - z)) 
c/t (2.1) 

where x(t) = {x1( t), , . . , x,,( t)) is a vector function, and the function 
f has period 2n in t. 

Let us suppose that the system (2.1) possesses a unique periodic solu- 
tion X(t), with period 2u, for 0 <T < E; which, as is well known, is de- 
fined by an initial function which is a periodic extension of X(t) to the 
initial set. It is clear [31 that the periodic solution z(t) will be 
infinitely differentiable if the function f( t, x(t), x( t - T)) is also 
infinitely differentiable. Consequently, by the methods of ill the solu- 
tion x(t) may be approximated to any desired degree of accuracy 

z (t) = X0(f) + Wl(1) + * * . -k ; xn (t) + 0 (t”“) (0 q t <23x) 

where x0(t) is a solution of the system 

dx, (t) 
- = f (4 5 (4, “0 (4) dt (2.2; 

and X,,(t) (for n = 1, 2, . . . ) is a solution of the system 

where f,( t) depends on x0( tf , x1( t) , . . . , ~,,._~i t) and is a known function 
of time. In the case under consideration Equation (2.2) has a unique 
periodic solution with period Zcr. Thus (2.3) is a linear nonhomogeneous 
system with periodic coefficients of period 2. and with a known periodic 
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function f,(t). Let us suppose that the homogeneous system corresponding 
to (2.3) Possesses only the trivial periodic solution. Then (2.2) and 
(2.3) define a unique periodic solution 

fg (t) + tJ.1 (t) $ . . . + 2 2, (1) 

which approximates the periodic solution 
x(t) of the system (2,l) up to terms of order 
n+l 

7. 

BY way of an example, consider the equa- 
tion 

g(t) + OX (1) + b (l) s (t - Z) -- i (l) f@ > 0) (2.4) 

where T is a small retardation, and b(t) and ,f’( t) are periodic functions 
with period 2~. Let us assume that /b(t) 1 < a. Then, for the equation 

i (1) -?- ar ft] + b (1) x (t - z) = 0 (2.5) 

one may construct a functional which satisfies the hypotheses of a 
theorem of Krasovskii [51 concerning uniform asymptotic stability. Con- 
sequently, there exists a unique periodic solution of Equation (2.5). 
namely x(t) Z 0. According to [41, Equation (2.4) has a unique periodic 
solution X( t), which may be approximated to any desired degree of accu- 
racy by means of the method outlined above. Let us remark that, for Equa- 
tion (2.4). the results obtained in this way have something in common 
with the results of Krasovskii 151. 
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